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ABSTRACT: The retrieval of the mass-weighted mean diameter (Dm) is a fundamental component of spaceborne pre-

cipitation retrievals. The Dual-Frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM)

satellite is the first satellite to use dual-wavelength ratio measurements—the quotient of radar reflectivity factors (Z)

measured at Ku and Ka wavelengths—to retrieve Dm. While it is established that DWR, being theoretically insensitive to

changes in ice crystal mass and concentration, can provide a superior retrieval of Dm compared to Z-based retrievals, the

benefits of this retrieval have yet to be directly observed or quantified. In this study, DWR–Dm and Z–Dm relationships are

empirically generated from collocated airborne radar and in situ cloud particle probe measurements. Data are collected

during nine intensive observation periods (IOPs) from three experiments representing different locations and times of year.

Across IOPs with varying ice crystal concentrations, cloud temperatures, and storm types, Z–Dm relationships vary con-

siderably while the DWR–Dm relationship remains consistent. This study confirms that a DWR–Dm relationship can

provide a more accurate and consistent Dm retrieval than a Z–Dm relationship, quantified by a reduced overall RMSE

(0.19 and 0.25mm, respectively) and a reduced range of biases between experiments (0.11 and 0.32mm, respectively).

KEYWORDS: Aircraft observations; In situ atmospheric observations; Measurements; Radars/Radar observations;

Remote sensing; Satellite observations

1. Introduction

Satellite radars are used extensively for global studies of

precipitation. There have been three cloud and precipitation

satellite radar missions and each has provided unique capa-

bilities that allowed for historic advances in the understanding

of precipitation. First, the Tropical Rainfall MeasuringMission

(TRMM; Kummerow et al. 2000) Ku-band Precipitation

Radar (PR) provided the first spaceborne vertical profiles of

precipitation over the tropics. These measurements have

been used as primary data in over 100 studies from multiple

fields of Earth science (Li et al. 2019). Second, the CloudSat

Cloud Profiling Radar (CPR; Stephens et al. 2004; Tanelli

et al. 2008) provided the first spaceborne vertical profiles of

precipitation at high latitudes using a highly sensitiveW-band

radar, leading to the first measurements of snowfall over

remote regions such as Greenland (Bennartz et al. 2019),

Antarctica (Palerme et al. 2014; Souverijns et al. 2018), and the

global oceans (Liu 2009; Hiley et al. 2011; Behrangi et al. 2014;

Kulie et al. 2016; Duffy and Bennartz 2018; Milani et al. 2018).

The Global Precipitation Measurement (GPM; Hou et al. 2014)

Dual-Frequency Precipitation Radar (DPR) is the third and

most recent satellite precipitation radar. The DPR is a

combination of two radars, one at Ku band (13.6 GHz) and

one at Ka band (35.5GHz), arranged to provide collocated

measurements. These radar measurements can be combined

to create a novel satellite measurement, the dual-wavelength

ratio (DWR; see the appendix for a complete list of acronyms

in this paper) given by

DWR5 10 log
10
(Z

1
/Z

2
) , (1)

with Z1 and Z2 representing radar reflectivity factors (Z) with

different wavelengths. DWR is sometimes referred to as the

‘‘dual-frequency ratio’’ (DFR; Liao et al. 2016). For the rest of

this paper, Z will refer to measured single-wavelength radar

factors in general, ZKu and ZKa will specifically refer to the Z

measured at the Ku and Ka wavelengths of the DPR, and DWR

will inherently refer to the DWR constructed from ZKu and ZKa,
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Satellite algorithms use radar measurements to retrieve

the mass-weighted mean diameter (Dm) of liquid and frozen

precipitation in retrieval algorithms, where

D
m
5

ðDmax

Dmin

n(D)m(D)DdD

ðDmax

Dmin

n(D)m(D)dD

, (2)

withm(D) representing ice particle mass as a function of particle

size, n(D) representing a measured or modeled ice particle

number distribution function, D representing a one-dimensional

measurement of ice particle size, and Dmin and Dmax repre-

senting the sizes of the largest and smallest ice particles con-

sidered for the particle size distribution (PSD). The m(D)

should not be confused with the mass distribution function that

often shares the same notation. Parameter Dm is valuable and

can be used as a characteristic dimension to understand micro-

physical processes and storm structure (Mroz et al. 2018;Akiyama

et al. 2019; Huang et al. 2019; Ni et al. 2019). Also,Dm is used to

quantify PSDs in satellite precipitation retrieval algorithms (Seto

et al. 2013; Wood et al. 2013; Williams et al. 2014; Borque et al.

2019). Satellite retrieval algorithms rely on assumed relationships

between radar measurements and Dm. Specifically referring to

DPR measurements in this study, these relationships will be re-

ferred to as Z–Dm and DWR–Dm relationships

The benefits of dual-frequency radar measurements for

frozen precipitation retrievals are well studied. The Z–Dm re-

lationships can vary considerably with respect to changes in

microphysical properties such as concentration, particle shape

or density, while the DWR–Dm relationships are much less

sensitive to changes in ice crystal properties and are theoretically

unaffected by changes in ice crystal concentration (Matrosov

1998; Liao et al. 2016; Leinonen et al. 2018a). Matrosov (1998)

published the first method to directly retrieve snowfall pre-

cipitation rates and Dm from dual-wavelength radar measure-

ments, and improved snowfall precipitation retrieval methods

were published as more scattering models became available

(Liao et al. 2008, 2016; Leinonen et al. 2018a). Aside from the

improvements for precipitation rate and Dm retrievals, the addi-

tion of the Ka radar to the TRMMPR provides improvements to

phase discrimination and light precipitation detection (Adhikari

and Nakamura 2002; Kollias et al. 2007). There is also a growing

body of literature demonstrating the utility of DWR observations

at three ormorewavelengths to provide simultaneous retrievals of

PSDdensity and habit (Kneifel et al. 2011; Leinonen and Szyrmer

2015; Mason et al. 2019; Tridon et al. 2019). These triple-

frequency methods can be applied to satellite retrievals during

coincident CloudSat and GPM measurements (Yin et al. 2017).

One central prediction of DWR–Dm retrievals has yet to be

addressed, however. If DWR–Dm relationships are minimally

impacted by cloudmicrophysics such as concentration and density,

one canhypothesize a singleDWR–Dm relationship that should be

observable in frozen clouds irrespective of cloud type or location.

Such an empirical relationship between DWR and Dm would be

free of scattering modeling assumptions typically required to

generate simulated reflectivities. A confidently invariant DWR–

Dm relationship could reduce a source of error in precipitation

retrievals. Data products that generate precipitation estimates

from satellite radar measurements rely on just one or two sets

of microphysical assumptions to describe all clouds on the

planet. However, average microphysical properties are known

to differ consistently with respect to different cloud types and

regions (Colle et al. 2014; Um et al. 2015). Differences between

assumed and true cloud properties could lead to regional biases

in studies that assume satellite data products to be a globally

uniform best estimate of truth, such as evaluations of snowfall in

reanalysis model from CloudSat observations (Behrangi et al.

2016; Palerme et al. 2017). If it can be demonstrated that aDWR

retrieval can minimize a bias in Dm across different storms, it

would prove that DWR retrievals of precipitation are not just

more accurate and sensitive than their single-wavelength coun-

terparts, but they are more globally consistent as well.

In this study, collocated airplane in situ and radar measure-

ments gathered during three GPM field campaigns in different

locations and meteorological conditions (deep convective clouds,

continental winter storms, and winter storms modified by orog-

raphy) are used to derive empirical Z–Dm and DWR–Dm rela-

tionships. The relationships are subsequently used to compare the

uncertainty of Dm retrieval methods across different environ-

ments. Experiments in this study are organized around three re-

search questions: ‘‘Are DWR and Dm better correlated than Z

and Dm in measured frozen clouds, and if so, by how much?’’;

‘‘How do Z–Dm and DWR–Dm empirical relationships for frozen

precipitation vary between different environmental conditions?’’;

and ‘‘Does an empirical DWR–Dm relationship provide a more

accurate and consistent retrieval in frozen precipitation than an

empirical Z–Dm relationship, and if so, by how much?’’ For the

purposes of this study, ‘‘environmental conditions’’ refer to the

conditions that distinguish different sets ofmeasurements from one

another (e.g., temperature, cloud type, meteorological conditions).

Note that these questions are phrased conservatively for the sake of

assumed ignorance. It is generally accepted that DWR-based re-

trievalswill be superior toZ-based retrievals, but the improvements

have yet to be demonstrated or quantified with real-world data.

The process used to identify collocated in situ and reflectivity

measurements is described in section 2. The results using the

collocated observations to answer the research questions are

provided in section 3. The empirical DWR–Dm relationship is

also derived in section 3. This relationship has potential use in

satellite retrieval algorithms and this application is discussed in

section 4. The findings of this study are summarized in section 5.

2. Generating a collocated Dm–DWR dataset

In this section, the steps taken to construct the collocated

DWR–Dm dataset are described. Experiments that collected

the necessary data are described in section 2a. The procedure

to calculate Dm from in situ observations of ice particles

within a sample collection volume is provided in section 2b.

The procedure to ensure consistency of DWR across different

experiments is provided in section 2c. The procedure used to

match in situ and radar observations is provided in section 2d.

a. GV experiments

The dataset of collocated radar and in situ measurements

comes from threeGPMGroundValidation (GV) experiments:
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the GPM Cold Season Precipitation Experiment (GCPEX;

Skofronick-Jackson et al. 2015), the Midlatitude Continental

Convective Clouds Experiment (MC3E; Jensen et al. 2016),

and the Olympic Mountains Experiment (OLYMPEX; Houze

et al. 2017). GCPEX studied winter snowstorms from January

through February 2012 near Barrie, Ontario. MC3E studied

springtime convective storms from April through June of

2011 near Lamont, Oklahoma. OLYMPEX studied win-

ter orographic storms from November through December

2015 near the Olympic Peninsula in Washington. Periods

during experiments when the aircraft were sampling storms

are referred to as ‘‘intensive observation periods’’ (IOPs).

Collocated measurements refer to periods of time when the

radar and in situ aircraft were sampling similar volumes.

IOPs in this study are denoted according to the first letter of

the experiment, followed by two numbers representing the

month, and two numbers representing the day. For example,

the OLYMPEX 1 December 2016 IOP is referred to as

‘‘O1201.’’ Exactly three IOPs from each experiment provide

satisfactory data within the collocation criteria for this

study. Collocation criteria are defined in section 2d. Flight

paths of the in situ and radar aircraft that visualize collo-

cated measurements during each IOP are provided in the

online supplement.

b. Dm measurements

As mentioned in the introduction, D refers to any one-

dimensional measurements of ice particle size. In this study,

ice particles within a sample volume are measured by imaging

probes installed on the UND Citation. The measured size of

an ice particle (Dmeas) is defined as the minimum diameter

of a circle that completely encompasses an ice particle image,

or as the minimum diameter of a circle that completely en-

compasses a reconstructed image of a partially imaged ice

particle (Heymsfield and Parrish 1978). PSDs were deter-

mined using the system for optical array probe data analysis

(SODA) processing code at NCAR that corrects for out of

focus circular particles and eliminates shattered artifacts The

binned data are available at 1 s resolution. Particle images

from a Two-Dimensional Cloud Imaging Probe (2D-C), a 2D

Stereo (2D-S), and a Cloud Imaging Probe (CIP) are used to

determine n(Dmeas) for Dmeas , 1mm depending on the

project. Particle images from a High-Volume Precipitation

Spectrometer version 1 (HVPS1) or High Volume Precipitation

Spectrometer version 3 (HVPS3) are used to determine n(Dmeas)

forDmeas . 1mm. The 2DC and CIP were used during GCPEX

and MC3E, while the 2DS was used OLYMPEX. The HVPS1

was used during MC3E, while the HVPS3 was used during

GCPEX and OLYMPEX.

The GPM-DPR algorithms (Seto et al. 2013; Chase et al.

2020) retrieve Dm as a liquid equivalent diameter (Dliq), the

diameter of a liquid drop with the same mass of an ice particle

of some Dmeas. To make the results of this study applicable

to GPM retrievals, n(Dmeas) is converted to n(Dliq) before

calculating Dm. The terms Dliq and Dmeas are related through

D
liq
5

�
6a

r
w
p

�1/3

Db/3
meas , (3)

where rw represents the density of water and a and b are

mass coefficient and exponent parameters used in power-law

mass–diameter relationshipsm(Dmeas)5 aDb
meas; a and b are set

to 0.007 and 2.2 g cm22.2, respectively, following the Heymsfield

et al. (2010) parameterization for unspecified convective or

stratiform clouds. These parameters are chosen since they were

also drawn from a combined experimental dataset representing

different regions and temperatures. Them(D) function used to

calculate Dm in Eq. (2) is derived from the density function

for a spherical liquid water droplet:

m(D)5 r
w

D3

6
. (4)

A goal of this study is to determine a general relationship

between DWR and Dm that is free from scattering assump-

tions, and the introduction of a mass–diameter assumption

arguably detracts from this goal. Amore objective relationship

between DWR andDm would result ifDm was calculated from

Dmeas, what could be considered a mass-weighted mean max-

imum particle dimension, though this relationship would still

be dependent upon what definition of Dmeas used (Wu and

McFarquhar 2016) and on the orientations of the three-

dimensional particles passing through the probe sample volume.

However, such a measurement is rarely used in precipitation re-

trievals, so liquid equivalentDm is therefore preferred. Results in

this study that are based on the Heymsfield et al. (2010)m–Dmeas

relation may not be directly applicable to algorithms that utilize

different a and b parameters. Different treatments of Dm essen-

tially amount to a scaling factor, however, and it would be a trivial

matter to recalculate the results of this study with respect to any

given mass assumption provided the same assumed m–Dmeas

relation is applied to all particles regardless of shape; some

mass calculation schemes dependent on particle habit (e.g.,

Jackson et al. 2012), particle area ratio (e.g., Baker and Lawson

2006), or particle size (e.g., Ding et al. 2020) do exist. For the

rest of this paper, however, D inherently refers to Dliq.

c. DWR measurements

Radar measurements at Ku and Ka wavelength were ob-

tained by either the High Altitude Wind and Rain Airborne

Profiler (HIWRAP; Li et al. 2016), which was deployed on the

NASAER-2 high-altitude aircraft, or theAdvanced Precipitation

Radar (APR; Sadowy et al. 2003) 2 or 3, which was deployed

on the DC-8 aircraft. The HIWRAP collected data during

MC3E and OLYMPEX, while the APR collected data during

GCPEX and OLYMPEX. The HIWRAP has scanning capabil-

ities, but it just operated at nadir mode for the GV experiments.

The HIWRAP has nominal Ku and Ka frequencies of 13.9 and

35.6GHz, respectively. TheHIWRAP has aminimum detectable

reflectivity of 0 and 25dB at Ku and Ka wavelengths, respec-

tively. The APR 2 and APR 3 consists of Ku and Ka scanning

radars with nominal frequencies of 13.4 and 35.6GHz, respec-

tively, though just the nadir pointing Ku and Ka reflectivity scans

are used in this study. The APR has a minimum detectable re-

flectivity of 5 dBat bothKu andKawavelengths. Initial radar gate

widths were 30m for APR measurements, 37m for HIWRAP

during OLYMPEX, and 75m for HIWRAP during MC3E.

For comparison with each other and GPM, radar profiles were
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rescaled to have a resolution as close to the 250-m gate width of

the DPR as possible. Reflectivities were averaged as linear units

before being converted to decibel reflectivities.

There are several phenomena unrelated to Dm that can

impact the measured DWR of a sample volume and introduce

errors into an empirical DWR–Dm relationship if not ac-

counted for. As ZKu and ZKa fall near the minimum detectable

reflectivity of precipitation radars along the edges of clouds

(including the sides and the tops of clouds), the difference

between Ku and Ka radar sensitivities can sometimes lead to

large and unphysical positive or negative DWR. Cloud-edge

DWR is easy to identify by sight, and measurements that ap-

peared to be influenced by cloud-edge DWR were removed

after the collocation process (section 2d). Attenuation, the

decrease of measured reflectivity due to absorption from water

and atmospheric gas, is stronger at Ka band than Ku band and

can increase DWR along a radar path. Attenuation from gas

should be on the order of tenths of a decibel (Chase et al. 2018).

Supercooled liquid water that may exist in the path between

the radar and in situ measurement can attenuate the radar

and is therefore considered as a possible source of uncer-

tainty in DWR. However, this effect has previously been

considered ignorable forZKameasurements in stratiform clouds

(Matrosov 2007), including studies using OLYMPEX data

(Chase et al. 2018). Ku andKa components of theHIWRAPand

APR also had different calibration offsets that varied with each

IOP, and the difference between these offsets leads to a DWR

bias. This calibration error can be estimated by identifying re-

gions where other sources of DWR have their minimum impact.

Since these sources will most often only serve to increase DWR

(negative DWR was only seen along the sides of clouds, and

retrievals that caught these edges were rare), these regions are

identified by retrieving the minimum DWR (DWRmin) along

each radar profile and the calibration error for each IOP was

determined as the mode of DWRmin. Calibration errors esti-

mated from each IOP are listed in Table 1, and these offsets are

applied to all measurements in this study.

d. Collocating DWR and Dm measurements

Anearest-neighbor algorithm is used to match the radar and

in situ measurements to the same time series. The closest

horizontal point of reflectivity is matched to the Citation air-

craft location for every second of flight time. The in situ and

radar measurements are averaged into discrete 10 s intervals

corresponding to an in situ measurement path of little more

than a kilometer, given the true speed of the aircraft. The 10 s

time offers a good compromise between having an adequate

statistical sample and resolving fine-scale variability of cloud

structure (McFarquhar et al. 2007). ‘‘Collocated data’’ are

defined as matched in situ and radarmeasurements with spatial

distance (dr) and time difference (dt) that fall below bound-

aries chosen by a sensitivity test. This test aims to maximize the

number of data points (Nmeas) and the average rank correlation

coefficient (r) between DWR and Dm as calculated from all

9 IOPs. The sensitivity test is visualized in Fig. 1. We use r as

the correlation coefficient since it can be used to identify

nonlinear relationships between two variables and the rela-

tionship between DWR and Dm is predicted to be nonlinear

across the full span of measured DWR (Liao et al. 2016). A

dt 5 3.5min and dr 5 12 km are chosen as boundaries that

provide an agreeable trade-off between r and Nmeas. Any data

with dt less than 10 s are removed to eliminate the possibility of

reflection from the aircraft being included in the dataset. Data

are removed if T . 238C to focus on freezing precipitation.

Data with clearly identifiable cloud-edge DWR influence are

removed on sight. During O1201, a collocation error was identi-

fied at 2319 UTC (figure not shown) whereby a few pairs of col-

located DWR and Dm were likely representing dissimilar PSDs

due to cloud inhomogeneity, and they were removed since they

adversely impacted results as outliers in empirical regressions.

The final collocated dataset consists of a coincident time

series of Dm and DWR, an example of which during G0224 is

presented in Fig. 2. The time series of the two measurements

are visibly similar, indicating that the matching procedure be-

tween these independent measurements was a success. TheDm

and DWR observed during this IOP, up to 10mm and 11 dB,

corresponds with the range of measurements seen during the

experiment.

3. Results

a. Fit functions for empirical data

Empirical relationships between parameters are derived

from regressions through collocated data that follow pre-

determined fit functions. Measured relationships between

collocated Z and Dm have been fit to a power law in previous

studies (Matrosov and Heymsfield 2017; Skofronick-Jackson

et al. 2019). The same convention is followed in this study, with

D
m
5 c

1
Z

c2
Ku , (5)

where c1 and c2 represent the Z–Dm relationship parameters.

The Z–Dm relationships are derived in linear space, but they

are plotted in dBZ.

The relationship between DWR and Dm has not been de-

rived from field observations before this study, but it has been

simulated by applying scattering models to assumed size dis-

tributions (Liao et al. 2016). When these relationships are

cast as functions of DWR, they are characterized with an

TABLE 1. Estimated calibration error subtracted from DWR

measurements during each IOP used in this experiment. IOPs are

listed twice if two radar aircraft were taking measurements on the

same day.

IOP Estimated calibration error (dB)

G0212 1.03

G0224 0.24

M0425 0.01

M0520 0.17

M0523 20.52

O1201 (HIWRAP) 0.23

O1212 (HIWRAP) 0.28

O1201 (APR) 0.16

O1212 (APR) 0.23

O1218 (APR) 0.20
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origin approaching 0, a negative curvature at lower DWR,

and a positive curvature at highDWR. To allow for this change

of inflection, a fit function defined by

D
m
5 c

3
DWRc4 1 c

5
DWRc6 (6)

is used to represent the relationships where c3, c4, c5, and c6
represent the DWR–Dm relationship parameters.

SinceDm below 0.2mm were not observed in this study, any

pure application of this regression results in c4 minimizing to

infinitesimally low values in an attempt to form an unphysical

y intercept. To ensure the function follows the shape suggested

by the theoretical scattering models, Eq. (6) is bounded with

c3 . 0mmdB2c4 , 0.25 , c4 , 1, c5 . 0mmdB2c6 , and c6 . 1.0.

In subsections that just consider collocated data from speci-

fied experiments, IOPs, or temperature ranges, regressions are

only plotted within the bounds of Z and DWR in the data

subsets.

b. Empirical relationships between radar
measurements and Dm

First, the empirical relationships are derived and the corre-

lations between radar measurements and Dm are compared

for the combined OLYMPEX, MC3E, and GCPEX IOPs,

hereafter referred to as the ‘‘composite dataset.’’ Empirical

relationships derived from the composite dataset are referred

to as the ‘‘composite empirical relationships.’’ The composite

data and composite empirical relationships for ZKu, ZKa, and

DWR are presented in Fig. 3. Regression parameters for

the composite empirical relationships are provided in a sup-

plemental table. All results in this section only refer to the

composite dataset. Noted differences in correlations between

Z–Dm and DWR–Dm relationships do not always apply for

collocated data from different experiments or IOPs.

DWR and Dm from the composite dataset are better

correlated and less heteroscedastic than ZKu and Dm. Less

FIG. 1. A visual representation of the sensitivity test used to define collocation through dr and dt between in situ

microphysical and radar data. (a) Nmeas and (b) r (both shaded) as a function of dt (min) and dr (km) for all nine

IOPs considered in this study. The star indicates the dr–dt threshold used to define collocated observations in

this study.

FIG. 2. A visualization of collocated data during the G0224 IOP. (a) The altitude of the

UND-Citation (points) during simultaneous DWR profiles (shaded, in dB; color bar at right),

and (b) time series of collocatedDWR (dB) andDm (mm)measurements in blue (left axis) and

red (right axis), respectively.
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heteroscedasticity here refers to the observation in Fig. 3 where

the spread or range of collocated measurements about the

composite empirical DWR–Dm relationship is similar at low

and high DWR. On the other hand, the spread of collocated

Dm about the composite empirical ZKu–Dm relationship in-

creases with increasing ZKu, such that maximum Dm values

associated withZKu increase from 0.75 to 2mmwhileminimum

Dm values remain relatively constant at 0.25mm. Figure 3 re-

veals that this heteroscedasticity is linked to the total particle

concentration (Nt), calculated from in situ PSDs through

N
t
5

ðDmax

Dmin

n(D) dD . (7)

Specifically, the heteroscedasticity of the ZKu–Dm data appear

to be associated with a set of data points with Dm , 0.75mm

and Nt . 105m23 that have disproportionately high Z compared

to other data points with the same Dm at lower Nt. This link be-

tweenNt and heteroscedasticity also explains why the data appear

homoscedastic, especially in comparison to ZKu and Dm. DWR

and Dm are both theoretically insensitive to Nt so the relation-

ship between the two should not be impacted by changes in Nt.

The values of ZKa and Dm from the composite dataset are

poorly correlated (r 5 0.19). We note that ZKa measurements

are rarely, if ever, used as sole measurements for satellite

frozen precipitation retrievals in research. However, since

CloudSat operates at a W-band wavelength that is narrower

and more prone to non-Rayleigh scattering effects than the

ZKa measurements used in this study, this result suggests that

CloudSat reflectivity measurements could have little correla-

tion with Dm in clouds that are observable by GPM.

c. Sensitivity of empirical relationships to different

environmental conditions

In this subsection, ZKu–Dm and DWR–Dm empirical rela-

tionships derived from data subsets representing different

environmental conditions are compared. Specifically, these

environmental conditions refer to differences in tempera-

tures ranges [section 4c(1)], the average conditions observed

in the three GV experiments [section 4c(2)], and cloud types

observed in the individual IOPs during the three experi-

ments [section 4c(3)]. The ZKa–Dm results tend to be similar

to theZKu–Dm results, just with lower correlation, so only the

ZKu–Dm results are shown. Tables in the online supplemental

material provide regression values for derived empirical re-

lationships and ranges of temperature, Dm, ZKu, and DWR

corresponding to each data subset.

1) EMPIRICAL RELATIONSHIPS IN DIFFERENT

TEMPERATURE REGIMES

Figure 4 shows the ZKu–Dm and DWR–Dm data and em-

pirical relationships in different temperature ranges. These

ranges are referred to as T4 (2408 , T , 2308C), T3 (2308 ,
T , 2208C), T2 (2208 , T , 2108C), and T1 (2108 ,
T,208C). The data point with DWR near 6 dB in Fig. 4e is a

high-influence outlier, so it is ignored when deriving the

DWR–Dm relationship for T4. The empirical relationship in

Fig. 4e is also truncated to a single power law to account for a

low maximum DWR.

T4 and T3 haveDm values that cover about half the range of

Dm measured during T2 and T1. A large difference in Dm

ranges between these regimes is expected, since PSDs in

clouds with T.2208C allow for the growth of dendrites that

can aggregate to be the largest ice particles. ZKu–Dm and

DWR–Dm relationships from different temperature ranges

tend to stay close to the composite empirical relationships,

with the exception of the ZKu–Dm relationship during T4 that

shows no correlation between Dm and ZKu (Fig. 4a). The

difference between the correlations theZKu–Dm data and the

DWR–Dm data in Figs. 4a and 4e suggests that the DWR–Dm

relationship could have particular benefits for retrieving Dm

for T,2308C. However, T3 and T4 only represent data from

FIG. 3. Scatterplots of collocated radarmeasurements andDm: (a)ZKu, (b)ZKa, and (c) DWR. Scattered data are

colored by Nt. Empirical relationships between radar measurements and Dm are derived and plotted over the

scattered data (red lines).
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two IOPs (M0425 and M0523), so more collocated data in

clouds with T , 2208C would be valuable to corroborate the

observed correlations in this temperature regime.

2) EMPIRICAL RELATIONSHIPS DURING

DIFFERENT EXPERIMENTS

Figure 5 shows the collocated data and empirical relation-

ships for the three different GV experiments. As mentioned

previously, many of the differences between DWR–Dm and

ZKu–Dm relationships noted in section 4a do not apply for in-

dividual experiments. The r between ZKu and Dm is similar to

the r between DWR and Dm from GCPEX and OLYMPEX,

and the noted heteroscedasticity from the ZKu–Dm relation-

ship is only evident from OLYMPEX. The GCPEX Z–Dm

relationships are offset toward higher Dm relative to the

OLYMPEX and MC3E Z–Dm relationships, suggesting po-

tential biases that could result from the application of a single

Z–Dm relationship to the different regions and seasons repre-

sented by the GV experiments.

The DWR–Dm relationships are more similar between

experiments than the Z–Dm relationships, and they mostly

provide the same predictions ofDm from DWR as the composite

relationship. The DWR–Dm relationships from OLYMPEX

and MC3E diverge from the composite relationship by up to

0.2mm at the highest dB provided by these experiments.

However, data in the range where the DWR–Dm relationships

diverge are notable sparse, and the end behavior of these

DWR–Dm relationships may be disproportionately influenced

by random errors.

3) EMPIRICAL RELATIONSHIPS DURING

DIFFERENT IOPS

Figures 6 and 7 provide the DWR–Dm and ZKu–Dm collo-

cated data from different IOPs. Ranges of DWR, Z, and Dm

vary considerably between IOPs, and since the fit functions

were chosen with the assumption that they would be applied to

large ranges ofZKu or DWR, attempted IOP-specific empirical

relationships were often overfit and provided little scientific

value for this study. Therefore, only the collocated data are pre-

sented in this section, and empirical relationships can be visually

implied. Collocated data are also colored by Nt to explain differ-

ences between empirical relationships from different IOPs.

DWR and Dm data from different IOPs often had similar

distributions. Data from G0128, M0425, M0520, M0523, and

FIG. 4. Scatterplots of collocated radar measurement and Dm: (a)–(d) ZKu and (e)–(h) DWR. Scattered data are colored by Nt.

Empirical relationships between radarmeasurements andDm are derived and plotted over the scattered data (red lines). The black dashed

line refers the composite empirical relationships. Data are separated into different temperature regimes represented by (a),(e)T,2308C,
(b),(f)2208 , T, 2308C, (c),(g) 2108 , T , 220C, and (d),(h) T . 2108C.
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O1201 all had 0.25,Dm , 1.2mm and 0,DWR, 6 dB, and

the empirical relationships for these IOPs mostly agree with

the composite relationship. The only one of these DWR–Dm

relationships that is consistently offset from the composite

relationship is M0520. This may be due to differences in

microphysics associated with differences in meteorology (this

case sampled a broad stratiform region of a large mesoscale

convective system). It may also be related to morphological

differences of the ice particles, since M0520 provided the only

measurements within a convective system with T . 2208C
where dendrites can form.

There is little similarity between the distributions ofZKu and

Dm among different IOPs. For example, G0128,M0523, O1201

all have similar ranges ofDm (0.3,Dm , 0.9mm, 0.4,Dm ,
1.2mm, and 0.5 , Dm , 1.1mm, respectively) but widely dif-

fering ranges of ZKu (6 , ZKu , 13 dBZ, 1 , ZKu , 29 dBZ,

16 , ZKu , 23 dBZ, respectively). There is a very high cor-

relation between ZKu andDm during M0520 (r5 0.9) but they

are totally uncorrelated during M0523 and M0425. Again,

M0520 was also the only MC3E IOP that predominantly

sampled PSDs for T . 2208C, whereas M0523 and M0425

sampled clouds with T , 2208C where nondendritic crystal

habits tend to dominate IOPs and higher Nt were observed.

This shows that the Z–Dm relationship can be impacted by

environmental factors that vary during and between different

IOPs while the DWR–Dm relationship is less affected, though

there may still be some sensitivity to particle habit. The fact

that the Z–Dm relationship of the IOPs with the highest NT

are all offset farthest below the empirical relationship also

suggest that more accurate Z–Dm relationships may be pre-

dictable for different environmental conditions if those con-

ditions can be associated with tendencies of Nt. However,

during GCPEX no Nt sensitivity is visible, and it is not im-

mediately apparent why the Z–Dm relationship is offset to-

ward higher Dm for Nt values that are associated with lower

Dm during other experiments

d. Retrieval evaluations

In this subsection, the composite empirical relationships are

evaluated for their ability to retrieve Dm. Collocated mea-

surements are separated into categories of field experiment,

IOP, and temperature range. The RMSE and bias corre-

sponding to the retrievals from different subsets are presented

in Fig. 8.

FIG. 5. As in Fig. 4, but data are separated by different experiments: (a),(d) GCPEX, (b),(e) MC3E, and (c),(f) OLYMPEX.
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Judging by the bias and RMSE values, the DWR–Dm re-

trieval provides demonstrably superior retrievals to Z–Dm

retrievals. With respect to the complete dataset, DWR–Dm

retrievals have a decreased RMSE (0.19 mm) compared

to ZKu–Dm retrievals (0.25 mm) and ZKa–Dm retrievals

(0.3mm). With the exception of G0128 and O1218, DWR–Dm

retrievals have a decreased RMSE across data subsets as well.

O1218 was based on a relatively low number of data points,

FIG. 6. CollocatedDWRandDm are presented as scatterplots and colored byNt. Data are separated by IOP, as labeled in each panel title.

The black dashed line refers to the composite empirical ZKu–Dm relationship.
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however, so statistical results from this day are not very

meaningful.

The DWR–Dm retrievals also have a lower bias across data

subsets than the Z–Dm retrievals. The range of biases between

experiments from the DWR–Dm relationship was 0.11 mm,

almost a third lower in RMSE than the range of biases be-

tween experiments from the ZKu–Dm relationship (0.32mm).

Following a prediction from section 3c(1), the DWR–Dm re-

trieval also provides a stronger decrease in bias for T,2208C
than forT.2208C. These differences in bias can often be very

FIG. 7. As in Fig. 6, but with ZKu
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strong; the bias from the DWR–Dm retrieval is less than 10%

the bias from the Z–Dm retrieval in four out of nine IOPs.

4. Application for GPM retrievals

The 2A-DPR retrieval algorithm that retrieves Dm from

DPR measurements currently relies on simulated relation-

ships between DWR and Dm, whereby a constant-density

spherical scattering model is applied to model PSDs to

construct a lookup table of DWR and Dm values (Seto et al.

2013). This relationship is already recognized to be a poor

representation of DWR–Dm relationships for most nonspher-

ical ice PSDs (Petty and Huang 2010; Leinonen et al. 2012),

but it is also difficult to objectively recommend an improved

model. Fundamentally different scattering models have dem-

onstrated similar worth for recreating multiple-frequency

reflectivity of ice PSDs in different environmental settings

(Kneifel et al. 2015) and each of these scattering models

require numerous microphysical parameterizations that are

still poorly understood for natural ice crystals (Jiang et al.

2017; Finlon et al. 2019). With little reason to prefer a par-

ticular model or parameterization, there are a large number

of DWR–Dm relationships with that can be recommended in

singular global retrieval models with similar justification

(Leinonen et al. 2018a).

The composite DWR–Dm relationship presented here rep-

resents a novel and singular alternative method to retrieve

Dm from GPMmeasurements that provides minimally biased

retrievals in diverse environmental conditions. The compos-

ite DWR–Dm relationship appears linear, and a first-order

regression would arguably be a functionally equivalent rela-

tionship for retrieval purposes. However, such a relationship

would violate boundary conditions required by physics. The

relationship must intercept the origin, and a first-order rela-

tionship would have a nonzero y intercept. For this reason,

the double power law is still preferred. In practice a function

that predicts unphysical negative values for Dm is necessary to

ensure that the average of random DWR instrument noise

about zero leads to a Dm . 0. The complete form of the

composite DWR–Dm relationship recommended for DPR

satellite retrievals is therefore presented as

D
m
5

�
0:43DWR0:25 1 0:06DWR1:17, DWR.5 0

20:43jDWRj0:25 2 0:06jDWRj1:17, DWR, 0
.

(8)

The composite DWR–Dm relationship demonstrates good

agreement with Dm predictions from simulated DWR–Dm

different homogeneous and heterogeneous scattering models

that have been recommended in recent literature (Leinonen

et al. 2018b; Hogan et al. 2017; Leinonen et al. 2018a; Tyynelä
et al. 2011; Mason et al. 2018). In Fig. 9, the composite

DWR–Dm relationship is compared with simulated relation-

ships from spheroidal, dendrite aggregate, and needle aggre-

gate scattering models. Reflectivity is calculated as

Z
l
5

�
«
l
1 2

«
l
2 1

�2
l4

p5

ðDmax

Dmin

n(D)s
b
(D) dD , (9)

with «l representing the dielectric constant of water at a given

wavelength, sb(D) representing the backscattered cross-section

distribution of ice particles, and l representing the radar wave-

length. Dendrite aggregate and needle aggregates are simulated

using the self-similar Rayleigh–Gans approximation (Hogan et al.

2017) with habit-specific parameters drawn from Mason et al.

(2019). Spheroids are simulated with the PyTmatrix package

(Leinonen 2014), incorporating the shape and orientation pa-

rameterizations for ice particles from Hogan et al. (2012). All

simulated relationships use the same Heymsfield et al. (2010)

mass–diameter relationship used to calculate Dm. PSDs are rep-

resentedby an exponential function that Liao et al. (2016) deemed

satisfactory to represent frozen PSDs with reflectivities above the

DPR minimum detectable reflectivity,

n(D)5N
0
e2(4/Dm)D , (10)

FIG. 8. (top) RMSE and (bottom) bias resulting from different radar retrievals of Dm. Dm is

retrieved using the empirical relationships from section 3b.
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with N0 representing the intercept parameter. The parame-

terization ofN0 is inconsequential for calculations ofDWRand

Dm, and Dm spans the 0–10mm range observed in this study.

The empirical DWR–Dm relationship provides retrievals of

Dm within 0.2mm of the fractal and spheroidal scattering

models up to 8 dB. Beyond this point, DWR–Dm relationships

diverge. Unfortunately, the GV data in this study set did

not provide a large number of high DWR collocations, and

most of the high DWR data that are provided come from

repeated passes through singular cloud features duringGCPEX.

Therefore, the empirical relationship represents a considerably

less diverse set of data at high DWR than lower DWR,

where all IOPs contribute to the regression. Furthermore, the

DWR–Dm relationship may not be valid for DWR and Dm

values greater or lower than those observed during the ex-

periments. A poor representation of high DWRmeasurements

is a noted deficiency of the composite DWR–Dm relationship,

but it can hopefully be improved with collocated observations

from future field experiments.

5. Conclusions

In this study, empirically generated relationships between

dual-frequency radar measurements (ZKu,ZKa, DWR) and the

Dm of frozen precipitation were generated from a dataset that

consisted of collocated in situ measurements of cloud micro-

physical properties within volumes remotely sensed by air-

borne radar from three experiments and nine IOPs. These

experiments sampled winter synoptic and lake-effect storms

near Ontario (GCPEX), winter orographic and synoptic storms

near the Olympic Mountain (OLYMPEX), and warm season

convective storms in Oklahoma (MC3E). A form of the DWR–

Dm relationship derived from this composite dataset that can be

used for DPR precipitation retrievals is provided by Eq. (8).

The DWR and Dm from the composite dataset had a

stronger correlation (r 5 0.77) than ZKu and Dm (r 5 0.52) or

ZKa and Dm (r 5 0.19). DWR and Dm from the composite

dataset were also more homoscedastic than ZKu and Dm. The

differences in heteroscedasticity between the two radar mea-

surements is related to an observed sensitivity of the Z–Dm

relationships to Nt that is not experienced by DWR. Clouds

with a higher Nt will have higher Z associated with lower Dm.

When theDm retrieved by the derived relation were directly

compared to in situ–measuredDm, the RMSE from theDWR–

Dm and ZKu–Dm retrievals were 0.25 and 0.19mm, respec-

tively. The range of retrieval biases between experiments from

the DWR–Dm relationship (0.11) was almost a third the range

of biases between experiments from the ZKu–Dm relationship

(0.32), and the bias from the DWR–Dm retrieval was less than

10% the bias from the Z–Dm retrieval in four out of nine

IOPs. Together, these results demonstrate that the DWR

measurements provided by DPR can offer a more precise and

unbiased retrieval of Dm, with a more consistent accuracy

across the range of retrievable Dm, than measurements from

Z alone.

One of the biggest limitations of this study was a relatively

low number of IOPs over only three different regions that

provided DWR–Dm collocations, leading to inconsistent di-

versity of data in different regions and measurement limits.

Measurements with Dm . 1mm were mostly provided by just

two GCPEX IOPs, and measurements with T , 2208C were

mostly provided by just two MC3E IOPs. Especially in

section 4c(2) where DWR–Dm and ZKu–Dm relationships be-

tween different IOPs were compared, differences between

empirical relationships suggested links to broader differences

inmicrophysical conditions, but there was not enough evidence

to draw confident conclusions. Follow-up studies that incor-

porate more experiments into the composite dataset will im-

prove the empirical DWR–Dm relationship as a tool for global

retrieval and model evaluation. Follow-up studies would be

particularly valuable to investigate the results just pertaining to

Z–Dm relationships, such as the similarity of the Z–Dm–Nt

relationship in different environmental conditions. Many ex-

periments, IOPs, and continuous observation sites that provide

single-wavelength radar observations and collocations could

not be included in this study because they did not also supply

DWR–Dm collocations, but they could be used tomake amuch

larger dataset for a dedicated study into Z–Dm relationships.

It is important to emphasize that the results gathered from

the composite dataset in this study were different than the

results that came from single experiments, even when multiple

IOPs were combined. Had only observations during GCPEX

been considered, it may have been concluded thatZ andDWR

share a similar correlation with Dm. This observation is rele-

vant to satellite retrievals, where algorithms are often based on

relationships between radar observations and microphysical

properties that are determined in single experiments (Wood

et al. 2013). Collocated observations between radar measure-

ments and in situ properties from multiple experiments likely

form a stronger basis for satellite retrieval algorithms that

are applied uniformly to retrievals in clouds globally. More

studies that combine common measurements from disparate

FIG. 9. The composite DWR–Dm relationship is compared with

simulated DWR–Dm relationships representing different simu-

lated ice particle shapes. The spheroid model is constructed with

PyTmatrix (Leinonen 2014); needle and dendrite aggregates are

constructed using the self-similar Rayleigh–Gans approximation

(Hogan et al. 2017)
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experimental studies are encouraged to develop the most ad-

vantageous retrieval algorithms for satellite measurements.
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APPENDIX

List of Acronyms

D Any linear size of an ice particle

Dmeas The maximum measured dimension of an ice

crystal from an image

Dliq The diameter of a liquid droplet with the mass

of an ice crystal

DPR Dual-Frequency Precipitation Radar

DWR Dual-wavelength ratio

GPM Global Precipitation Measurement

GV Ground Validation

GCPEX GPM Cold Season Experiment

MC3E Midlatitude Continental Convective Clouds

Experiment

OLYMPEX Olympic Mountains Experiment

PSD Particle size distribution; in this paper, ‘‘particles’’

refer to ice crystals

Z Radar reflectivity

REFERENCES

Adhikari, N. B., and K. Nakamura, 2002: Detectable rain range of

spaceborne Ka-band radar estimated from TRMM Precipitation

Radar data. J. Atmos. Oceanic Technol., 19, 1878–1885,

https://doi.org/10.1175/1520-0426(2002)019,1878:DRROSK.
2.0.CO;2.

Akiyama, S., S. Shige, M. K. Yamamoto, and T. Iguchi, 2019:

Heavy ice precipitation band in an oceanic extratropical cy-

clone observed by GPM/DPR: 1. A case study.Geophys. Res.

Lett., 46, 7007–7014, https://doi.org/10.1029/2019GL082896.

Baker, B. A., and R. P. Lawson, 2006: Improvement in determi-

nation of ice water content from two-dimensional particle

imagery. Part I: Image to mass relationships. J. Appl. Meteor.,

45, 1282–1290, https://doi.org/10.1175/JAM2398.1.

Behrangi, A., and Coauthors, 2014: Status of high-latitude

precipitation estimates from observations and reanalyses.

J. Geophys. Res. Atmos., 121, 4468–4486, https://doi.org/

10.1002/2015JD024546.

——, and Coauthors, 2016: Status of high-latitude precipitation

estimates from observations and reanalyses. J. Geophys. Res.

Atmos., 121, 4468–4486, https://doi.org/10.1002/2015jd024546.
Bennartz, R., F. Fell, D. Schuettemeyer, R. Bennartz, C. Pettersen,

and M. D. Shupe, 2019: Spatial and temporal variability of

snowfall over Greenland from CloudSat observations. Atmos.

Chem. Phys., 19, 8101–8121, https://doi.org/10.5194/acp-19-

8101-2019.

Borque, P., K. J. Harnos, S. W. Nesbitt, and G. M. McFarquhar,

2019: Improved parameterization of ice particle size dis-

tributions using uncorrelated mass spectrum parameters:

Results from GCPEx. J. Appl. Meteor. Climatol., 58, 1657–

1676, https://doi.org/10.1175/JAMC-D-18-0203.1.

Chase, R. J., and Coauthors, 2018: Evaluation of triple-frequency

radar retrieval of snowfall properties using coincident air-

borne in situ observations during OLYMPEX. Geophys. Res.

Lett., 45, 5752–5760, https://doi.org/10.1029/2018GL077997.

——, S.W.Nesbitt, andG.M.McFarquhar, 2020: Evaluation of the

microphysical assumptions within GPM-DPR using ground-

based observations of rain and snow. Atmosphere, 11, 619,

https://doi.org/10.3390/atmos11060619.

Colle, B. A., D. Stak, and S. E. Yuter, 2014: Surface microphysical

observations within East Coast winter storms on Long Island,

New York. Mon. Wea. Rev., 142, 3126–3146, https://doi.org/

10.1175/MWR-D-14-00035.1.

Ding, S., G. M. McFarquhar, S. W. Nesbitt, R. Chase, M. R. Poellot,

and H. Wang, 2020: The dependence of mass-dimensional rela-

tionships on median mass diameter.Atmosphere, 11, 756, https://

doi.org/10.3390/atmos11070756.

Duffy, G., and R. Bennartz, 2018: The role of melting snow in the

ocean surface heat budget.Geophys. Res. Lett., 45, 9782–9789,

https://doi.org/10.1029/2018GL079182.

Finlon, J. A., G. M. McFarquhar, S. W. Nesbitt, R. M. Rauber,

H. Morrison, W. Wu, and P. Zhang, 2019: A novel approach

for characterizing the variability in mass-dimension relationships:

Results fromMC3E.Atmos. Chem. Phys., 19, 3621–3643, https://

doi.org/10.5194/acp-19-3621-2019.

Heymsfield,A. J., and J. L. Parrish, 1978:A computational technique

for increasing the effective sampling volume of the PMS two-

dimensional particle size spectrometer. J. Appl. Meteor., 17,

1566–1572, https://doi.org/10.1175/1520-0450(1978)017,1566:

ACTFIT.2.0.CO;2.

——, C. Schmitt, A. Bansemer, and C. H. Twohy, 2010: Improved

representation of ice particle masses based on observations in

natural clouds. J. Atmos. Sci., 67, 3303–3318, https://doi.org/

10.1175/2010JAS3507.1.

Hiley, M. J., M. S. Kulie, and R. Bennartz, 2011: Uncertainty

analysis for CloudSat snowfall retrievals. J. Appl. Meteor.

Climatol., 50, 399–418, https://doi.org/10.1175/2010JAMC2505.1.

Hogan, R. J., L. Tian, P. R. A. Brown, C. D. Westbrook, A. J.

Heymsfield, and J. D. Eastment, 2012: Radar scattering from

ice aggregates using the horizontally aligned oblate spheroid

approximation. J. Appl.Meteor. Climatol., 51, 655–671, https://

doi.org/10.1175/jamc-d-11-074.1.

——,R.Honeyager, J. Tyynelä, and S. Kneifel, 2017: Calculating the

millimetre-wave scattering phase function of snowflakes using

the self-similar Rayleigh–Gans approximation. Quart. J. Roy.

Meteor. Soc., 143, 834–844, https://doi.org/10.1002/qj.2968.

Hou, A. Y., and Coauthors, 2014: The Global Precipitation

Measurement mission. Bull. Amer. Meteor. Soc., 95, 701–722,

https://doi.org/10.1175/BAMS-D-13-00164.1.

AUGUST 2021 DUFFY ET AL . 2545

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/29/22 06:46 PM UTC

https://ghrc.nsstc.nasa.gov/pub/fieldCampaigns/gpmValidation/
https://doi.org/10.1175/1520-0426(2002)019<1878:DRROSK>2.0.CO;2
https://doi.org/10.1175/1520-0426(2002)019<1878:DRROSK>2.0.CO;2
https://doi.org/10.1029/2019GL082896
https://doi.org/10.1175/JAM2398.1
https://doi.org/10.1002/2015JD024546
https://doi.org/10.1002/2015JD024546
https://doi.org/10.1002/2015jd024546
https://doi.org/10.5194/acp-19-8101-2019
https://doi.org/10.5194/acp-19-8101-2019
https://doi.org/10.1175/JAMC-D-18-0203.1
https://doi.org/10.1029/2018GL077997
https://doi.org/10.3390/atmos11060619
https://doi.org/10.1175/MWR-D-14-00035.1
https://doi.org/10.1175/MWR-D-14-00035.1
https://doi.org/10.3390/atmos11070756
https://doi.org/10.3390/atmos11070756
https://doi.org/10.1029/2018GL079182
https://doi.org/10.5194/acp-19-3621-2019
https://doi.org/10.5194/acp-19-3621-2019
https://doi.org/10.1175/1520-0450(1978)017<1566:ACTFIT>2.0.CO;2
https://doi.org/10.1175/1520-0450(1978)017<1566:ACTFIT>2.0.CO;2
https://doi.org/10.1175/2010JAS3507.1
https://doi.org/10.1175/2010JAS3507.1
https://doi.org/10.1175/2010JAMC2505.1
https://doi.org/10.1175/jamc-d-11-074.1
https://doi.org/10.1175/jamc-d-11-074.1
https://doi.org/10.1002/qj.2968
https://doi.org/10.1175/BAMS-D-13-00164.1


Houze, R. A., Jr., and Coauthors, 2017: The Olympic Mountains

Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98,

2167–2188, https://doi.org/10.1175/bams-d-16-0182.1.

Huang,G. J., V. N. Bringi, A. J. Newman,G. Lee, D.Moisseev, and

B. M. Notaro�s, 2019: Dual-wavelength radar technique de-

velopment for snow rate estimation: A case study from

GCPEx. Atmos. Meas. Tech., 12, 1409–1427, https://doi.org/

10.5194/amt-12-1409-2019.

Jackson, R. C., and Coauthors, 2012: The dependence of ice mi-

crophysics on aerosol concentration in arctic mixed-phase

stratus clouds during ISDAC and M-PACE. J. Geophys. Res.,

117, D15207, https://doi.org/10.1029/2012JD017668.

Jensen, M. P., and Coauthors, 2016: The Midlatitude Continental

Convective Clouds Experiment (MC3E). Bull. Amer. Meteor.

Soc., 97, 1667–1686, https://doi.org/10.1175/bams-d-14-00228.1.

Jiang, Z., M. Oue, J. Verlinde, E. E. Clothiaux, K. Aydin, G. Botta,

and Y. Lu, 2017: What can we conclude about the real aspect

ratios of ice particle aggregates from two-dimensional images?

J. Appl. Meteor. Climatol., 56, 725–734, https://doi.org/10.1175/

JAMC-D-16-0248.1.

Kneifel, S., M. S. Kulie, and R. Bennartz, 2011: A triple-frequency

approach to retrieve microphysical snowfall parameters.

J. Geophys. Res., 116, D11203, https://doi.org/10.1029/

2010JD015430.

——, A. von Lerber, J. Tiira, D. Moisseev, P. Kollias, and

J. Leinonen, 2015: Observed relations between snowfall

microphysics and triple-frequency radar measurements.

J. Geophys. Res. Atmos., 120, 6034–6055, https://doi.org/

10.1002/2015JD023156.

Kollias, P., E. E. Clothiaux, M. A. Miller, B. A. Albrecht, G. L.

Stephens, and T. P. Ackerman, 2007: Millimeter-wavelength

radars: New frontier in atmospheric cloud and precipitation

research. Bull. Amer. Meteor. Soc., 88, 1608–1624, https://

doi.org/10.1175/BAMS-88-10-1608.

Kulie, M. S., L. Milani, N. B. Wood, S. A. Tushaus, R. Bennartz,

and T. S. L’Ecuyer, 2016: A shallow cumuliform snowfall

census using spaceborne radar. J. Hydrometeor., 17, 1261–

1279, https://doi.org/10.1175/JHM-D-15-0123.1.

Kummerow, C., and Coauthors, 2000: The status of the Tropical

Rainfall Measuring Mission (TRMM) after two years in orbit.

J. Appl. Meteor., 39, 1965–1982, https://doi.org/10.1175/1520-

0450(2001)040,1965:TSOTTR.2.0.CO;2.

Leinonen, J., 2014: High-level interface to T-matrix scattering

calculations: Architecture, capabilities and limitations. Opt.

Express, 22, 1655, https://doi.org/10.1364/oe.22.001655.

——, andW. Szyrmer, 2015: Radar signatures of snowflake riming:

Amodeling study.Earth Space Sci., 2, 346–358, https://doi.org/

10.1002/2015ea000102.

——, S. Kneifel, D. Moisseev, J. Tyynelä, S. Tanelli, and

T. Nousiainen, 2012: Evidence of nonspheroidal behavior

in millimeter-wavelength radar observations of snowfall.

J. Geophys. Res., 117, D18205, https://doi.org/10.1029/

2012JD017680.

——, and Coauthors, 2018a: Retrieval of snowflake microphysical

properties frommultifrequency radar observations.Atmos.Meas.

Tech., 11, 5471–5488, https://doi.org/10.5194/amt-11-5471-2018.

——, S. Kneifel, and R. J. Hogan, 2018b: Evaluation of the

Rayleigh–Gans approximation for microwave scattering by

rimed snowflakes. Quart. J. Roy. Meteor. Soc., 144, 77–88,

https://doi.org/10.1002/qj.3093.

Li, L., and Coauthors, 2016: The NASA High-Altitude Imaging

Wind and Rain Airborne Profiler. IEEE Trans. Geosci. Remote

Sens., 54, 298–310, https://doi.org/10.1109/TGRS.2015.2456501.

Li, N., Z. Wang, X. Chen, and G. Austin, 2019: Studies of general

precipitation features with TRMM PR data: An extensive over-

view. Remote Sens., 11, 80, https://doi.org/10.3390/rs11010080.

Liao, L., R. Meneghini, L. Tian, and G. M. Heymsfield, 2008:

Retrieval of snow and rain from combined X- and W-band

airborne radar measurements. IEEE Trans. Geosci. Remote

Sens., 46, 1514–1524, https://doi.org/10.1109/TGRS.2008.916079.

——, ——, A. Tokay, and L. F. Bliven, 2016: Retrieval of snow

properties for Ku- andKa-band dual-frequency radar. J. Appl.

Meteor. Climatol., 55, 1845–1858, https://doi.org/10.1175/

JAMC-D-15-0355.1.

Liu, G., 2009: Deriving snow cloud characteristics from CloudSat

observations. J. Geophys. Res., 113, D00A09, https://doi.org/

10.1029/2007JD009766.

Mason, S. L., C. J. Chiu, R. J. Hogan, D. Moisseev, and S. Kneifel,

2018: Retrievals of riming and snow density from vertically

pointingDoppler radars. J. Geophys. Res. Atmos., 123, 13 807–

13 834, https://doi.org/10.1029/2018JD028603.

——, R. J. Hogan, C. D. Westbrook, S. Kneifel, D. Moisseev, and

L. von Terzi, 2019: The importance of particle size distribution

and internal structure for triple-frequency radar retrievals of

the morphology of snow. Atmos. Meas. Tech., 12, 4993–5018,

https://doi.org/10.5194/amt-12-4993-2019.

Matrosov, S. Y., 1998:A dual-wavelength radarmethod tomeasure

snowfall rate. J. Appl. Meteor., 37, 1510–1521, https://doi.org/

10.1175/1520-0450(1998)037,1510:ADWRMT.2.0.CO;2.

——, 2007: Modeling backscatter properties of snowfall at milli-

meter wavelengths. J. Atmos. Sci., 64, 1727–1736, https://

doi.org/10.1175/JAS3904.1.

——, and A. J. Heymsfield, 2017: Empirical relations between size

parameters of ice hydrometeor populations and radar reflectivity.

J. Appl. Meteor. Climatol., 56, 2479–2488, https://doi.org/10.1175/

JAMC-D-17-0076.1.

McFarquhar, G. M., J. Um, M. Freer, D. Baumgardner, G. L. Kok,

and G. Mace, 2007: Importance of small ice crystals to

cirrus properties: Observations from the Tropical Warm Pool

International Cloud Experiment (TWP-ICE). Geophys. Res.

Lett., 34, L13803, https://doi.org/10.1029/2007GL029865.

Milani, L., and Coauthors, 2018: CloudSat snowfall estimates over

Antarctica and the Southern Ocean: An assessment of inde-

pendent retrieval methodologies and multi-year snowfall

analysis. Atmos. Res., 213, 121–135, https://doi.org/10.1016/

j.atmosres.2018.05.015.

Mroz, K., A. Battaglia, T. J. Lang, S. Tanelli, and G. F. Sacco, 2018:

Global Precipitation Measuring Dual-Frequency Precipitation

Radar observations of hailstorm vertical structure: Current

Capabilities and Drawbacks. J. Appl. Meteor. Climatol., 57,

2161–2178, https://doi.org/10.1175/jamc-d-18-0020.1.

Ni, X., C. Liu, and E. Zipser, 2019: Ice microphysical properties

near the tops of deep convective cores implied by the GPM

dual-frequency radar observations. J. Atmos. Sci., 76, 2899–

2917, https://doi.org/10.1175/jas-d-18-0243.1.

Palerme, C., J. E. Kay, C. Genthon, T. L’Ecuyer, N. B. Wood, and

C. Claud, 2014: How much snow falls on the Antarctic ice

sheet? Cryosphere, 8, 1577–1587, https://doi.org/10.5194/tc-8-

1577-2014.

——, C. Genthon, C. Claud, J. E. Kay, N. B. Wood, and

T. L’Ecuyer, 2017: Evaluation of current and projected

Antarctic precipitation in CMIP5 models. Climate Dyn., 48,

225–239, https://doi.org/10.1007/s00382-016-3071-1.

Petty, G. W., and W. Huang, 2010: Microwave backscatter and

extinction by soft ice spheres and complex snow aggregates.

J. Atmos. Sci., 67, 769–787, https://doi.org/10.1175/2009JAS3146.1.

2546 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 78

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/29/22 06:46 PM UTC

https://doi.org/10.1175/bams-d-16-0182.1
https://doi.org/10.5194/amt-12-1409-2019
https://doi.org/10.5194/amt-12-1409-2019
https://doi.org/10.1029/2012JD017668
https://doi.org/10.1175/bams-d-14-00228.1
https://doi.org/10.1175/JAMC-D-16-0248.1
https://doi.org/10.1175/JAMC-D-16-0248.1
https://doi.org/10.1029/2010JD015430
https://doi.org/10.1029/2010JD015430
https://doi.org/10.1002/2015JD023156
https://doi.org/10.1002/2015JD023156
https://doi.org/10.1175/BAMS-88-10-1608
https://doi.org/10.1175/BAMS-88-10-1608
https://doi.org/10.1175/JHM-D-15-0123.1
https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2
https://doi.org/10.1364/oe.22.001655
https://doi.org/10.1002/2015ea000102
https://doi.org/10.1002/2015ea000102
https://doi.org/10.1029/2012JD017680
https://doi.org/10.1029/2012JD017680
https://doi.org/10.5194/amt-11-5471-2018
https://doi.org/10.1002/qj.3093
https://doi.org/10.1109/TGRS.2015.2456501
https://doi.org/10.3390/rs11010080
https://doi.org/10.1109/TGRS.2008.916079
https://doi.org/10.1175/JAMC-D-15-0355.1
https://doi.org/10.1175/JAMC-D-15-0355.1
https://doi.org/10.1029/2007JD009766
https://doi.org/10.1029/2007JD009766
https://doi.org/10.1029/2018JD028603
https://doi.org/10.5194/amt-12-4993-2019
https://doi.org/10.1175/1520-0450(1998)037<1510:ADWRMT>2.0.CO;2
https://doi.org/10.1175/1520-0450(1998)037<1510:ADWRMT>2.0.CO;2
https://doi.org/10.1175/JAS3904.1
https://doi.org/10.1175/JAS3904.1
https://doi.org/10.1175/JAMC-D-17-0076.1
https://doi.org/10.1175/JAMC-D-17-0076.1
https://doi.org/10.1029/2007GL029865
https://doi.org/10.1016/j.atmosres.2018.05.015
https://doi.org/10.1016/j.atmosres.2018.05.015
https://doi.org/10.1175/jamc-d-18-0020.1
https://doi.org/10.1175/jas-d-18-0243.1
https://doi.org/10.5194/tc-8-1577-2014
https://doi.org/10.5194/tc-8-1577-2014
https://doi.org/10.1007/s00382-016-3071-1
https://doi.org/10.1175/2009JAS3146.1


Sadowy,G.A., A. C. Berkun,W.Chun, E. Im, and S.Durden, 2003:

Development of an advanced airborne precipitation radar.

Microwave J., 46, 84–98.

Seto, S., T. Iguchi, and T. Oki, 2013: The basic performance of a

precipitation retrieval algorithm for the Global Precipitation

Measurement mission’s single/dual-frequency radar mea-

surements. IEEE Trans. Geosci. Remote Sens., 51, 5239–

5251, https://doi.org/10.1109/TGRS.2012.2231686.

Skofronick-Jackson, G., M. Kulie, L. Milani, S. J. Munchak, N. B.

Wood, and V. Levizzani, 2019: Satellite estimation of falling

snow: A Global Precipitation Measurement (GPM) Core

Observatory perspective. J. Appl. Meteor. Climatol., 58, 1429–
1448, https://doi.org/10.1175/JAMC-D-18-0124.1.

Souverijns, N., and Coauthors, 2018: Evaluation of the CloudSat

surface snowfall product over Antarctica using ground-based

precipitation radars. Cryosphere, 12, 3775–3789, https://doi.org/

10.5194/tc-12-3775-2018.

Stephens, G. L., and Coauthors, 2004: The CloudSat mission and

the A-Train: A new dimension of space-based observations

of clouds and precipitation. Bull. Amer. Meteor. Soc., 83,

1771–1790, https://doi.org/10.1175/BAMS-83-12-1771.

Tanelli, S., S. L. Durden, E. Im, K. S. Pak, D. G. Reinke, P. Partain,

J. M. Haynes, and R. T. Marchand, 2008: CloudSat’s cloud

profiling radar after two years in orbit: Performance, calibra-

tion, and processing. IEEE Trans. Geosci. Remote Sens., 46,

3560–3573, https://doi.org/10.1109/TGRS.2008.2002030.

Tridon, F., and Coauthors, 2019: The microphysics of stratiform

precipitation during OLYMPEX: Compatibility between

triple-frequency radar and airborne in situ observations.

J. Geophys. Res. Atmos., 124, 8764–8792, https://doi.org/10.1029/

2018jd029858.

Tyynelä, J., J. Leinonen, D. Moisseev, and T. Nousiainen, 2011:

Radar backscattering from snowflakes: Comparison of fractal,

aggregate, and soft spheroid models. J. Atmos. Oceanic

Technol., 28, 1365–1372, https://doi.org/10.1175/JTECH-D-

11-00004.1.

Um, J., G. M. McFarquhar, Y. P. Hong, S.-S. Lee, C. H. Jung, R. P.

Lawson, and Q. Mo, 2015: Dimensions and aspect ratios of

natural ice crystals. Atmos. Chem. Phys., 15, 3933–3956,

https://doi.org/10.5194/acp-15-3933-2015.

Williams, C. R., and Coauthors, 2014: Describing the shape of

raindrop size distributions using uncorrelated raindrop mass

spectrum parameters. J. Appl. Meteor. Climatol., 53, 1282–

1296, https://doi.org/10.1175/JAMC-D-13-076.1.

Wood, N. B., T. S. L’Ecuyer, D. G. Vane, G. L. Stephens, and

P. Partain, 2013: Level 2C snow profile process description

and interface control document. JPL Doc., 21 pp., http://

www.cloudsat.cira.colostate.edu/sites/default/files/products/

files/2C-SNOW-PROFILE_PDICD.P_R04.20130210.pdf.

Wu, W., and G. M. McFarquhar, 2016: On the impacts of different

definitions of maximum dimension for nonspherical particles

recorded by 2D imaging probes. J. Atmos. Oceanic Technol.,

33, 1057–1072, https://doi.org/10.1175/JTECH-D-15-0177.1.

Yin, M., G. Liu, R. Honeyager, and F. J. Turk, 2017: Observed

differences of triple-frequency radar signatures between

snowflakes in stratiform and convective clouds. J. Quant.

Spectrosc. Radiat. Transfer, 193, 13–20, https://doi.org/10.1016/

j.jqsrt.2017.02.017.

AUGUST 2021 DUFFY ET AL . 2547

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/29/22 06:46 PM UTC

https://doi.org/10.1109/TGRS.2012.2231686
https://doi.org/10.1175/JAMC-D-18-0124.1
https://doi.org/10.5194/tc-12-3775-2018
https://doi.org/10.5194/tc-12-3775-2018
https://doi.org/10.1175/BAMS-83-12-1771
https://doi.org/10.1109/TGRS.2008.2002030
https://doi.org/10.1029/2018jd029858
https://doi.org/10.1029/2018jd029858
https://doi.org/10.1175/JTECH-D-11-00004.1
https://doi.org/10.1175/JTECH-D-11-00004.1
https://doi.org/10.5194/acp-15-3933-2015
https://doi.org/10.1175/JAMC-D-13-076.1
http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-SNOW-PROFILE_PDICD.P_R04.20130210.pdf
http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-SNOW-PROFILE_PDICD.P_R04.20130210.pdf
http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-SNOW-PROFILE_PDICD.P_R04.20130210.pdf
https://doi.org/10.1175/JTECH-D-15-0177.1
https://doi.org/10.1016/j.jqsrt.2017.02.017
https://doi.org/10.1016/j.jqsrt.2017.02.017

